Total Synthesis of (+)-Zampanolide

Amos B. Smith, III,* Igor G. Safonov, and R. Michael Corbett

Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104

Received September 24, 2001
In 1996 Tanaka and Higa reported the isolation, partial structure elucidation, and biological activity of (-)-zampanolide, an architecturally novel macrolide from the Okinawan sponge Fasciospongia rimosa (Scheme 1). ${ }^{1}$ Key structural elements include the highly unsaturated framework and the uncommon N -acyl hemiaminal side chain. ${ }^{2}$ Adding to the structural complexity, only the relative stereochemistry between $\mathrm{C}(11), \mathrm{C}(15)$, and $\mathrm{C}(19)$ had been assigned. Although the extreme scarcity of (-)zampanolide precluded a comprehensive evaluation of the biological profile, the impressive cytotoxicity against P388, HT29, A549, and MEL28 cell lines ($\mathrm{IC}_{50} 1-5 \mathrm{ng} / \mathrm{mL}$), in conjunction with the interesting architecture, prompted us to launch a synthetic program targeting this metabolite. Herein, we disclose the first total synthesis and tentative stereochemical assignment of the nonnaturally occurring antipode, (+)-zampanolide (1).

Retrosynthetically, disconnections of $\mathbf{1}$ at the amide, the macrolide, and the $C(2-3), C(8-9)$, and $C(17-18)$ linkages gave rise to fragments $\mathbf{C}(3-8) \mathbf{A}, C(9-17) \mathbf{B}, \mathrm{C}(18-20) \mathbf{C}$, and $\mathrm{C}\left(1^{\prime}-\right.$ $\left.6^{\prime}\right)$ D. In the forward direction, we envisioned construction of the macrolide via Kocienski-Julia olefination ${ }^{3}$ of aldehyde \mathbf{A} with sulfone \mathbf{B}, followed in turn by nucleophilic opening of epoxide \mathbf{C} with a higher-order cuprate ${ }^{4}$ derived from $\mathbf{A B}$, incorporation of a $\mathrm{C}(1-2)$ acyl phosphonate, and intramolecular HornerEmmons macrocyclization. ${ }^{5}$ Highlights of the closing stage of the synthesis would then entail installation of the N-acyl hemiaminal moiety via a stereospecific Curtius rearrangement ${ }^{6}$ of α-alkoxy acid $\mathbf{2}$ followed by acylation with acid chloride \mathbf{D}.

To assemble fragment \mathbf{B} we elected the Petasis-Ferrier rearrangement, ${ }^{7}$ recently established in our laboratory as a powerful, stereocontrolled entry to cis-2,6-disubstituted tetrahydropyrans. ${ }^{8}$ Toward this end, Brown asymmetric allylation ${ }^{9}$ of aldehyde $\mathbf{3}^{10}$ (Scheme 2) followed in turn by TES protection of the hydroxyl and ozonolysis afforded (+)-4, which upon oxidation ${ }^{11}$ and desilylation led to β-hydroxy acid (-)-5 (57\% yield, five steps). Bis-silylation ${ }^{12}$ followed by union with (2E)-3-

[^0]
Scheme 1

Scheme 2

Scheme 3

bromobut-2-enal ${ }^{13}$ promoted by TMSOTf ${ }^{14}$ furnished dioxanone $(+)-6$ in 82% overall yield [10:1 at $\mathrm{C}(15)$]. Methylenation with the Petasis-Tebbe reagent ${ }^{15}$ then furnished the corresponding enol ethers [72% yield, $6: 1$ at $\mathrm{C}(15)$], which upon treatment with $\mathrm{Me}_{2} \mathrm{AlCl}^{8}$ underwent the desired Petasis-Ferrier rearrangement ${ }^{7}$ to deliver cis-pyranone (+)-7 in 59\% yield. ${ }^{16}$ Ketone methylenation, desilylation, incorporation of the thiotetrazole via Mitsunobu reaction, ${ }^{17}$ and oxidation ${ }^{18}$ proceeded smoothly to afford sulfone $(-)-\mathbf{B}(62 \%$ yield, 4 steps).

Construction of subunits \mathbf{A} and \mathbf{C} was achieved as outlined in Scheme $3 .{ }^{19}$ Noteworthy is the stereoselective ${ }^{20}$ installation of the $\mathrm{C}(4-5)$ olefin in subtarget \mathbf{A}.

With the requisite subtargets in hand, assembly of the macrolide began with the Kocienski-modified ${ }^{3}$ Julia olefination ${ }^{21}$ of aldehyde

[^1]
Scheme 4

 -78 to $0^{\circ} \mathrm{C}$
(72%)

$(+)$-A (Scheme 4) with sulfone (-)-B to provide vinyl bromide $(-)-\mathbf{A B}$ as the sole $\mathbf{C}(8-9)$ olefin isomer (88% yield). Union of $(-)$-AB with epoxide $(+)-\mathbf{C}$ was then achieved through aegis of a higher-order cuprate. ${ }^{4}$ Initially, low yields resulted due to the extreme sensitivity of the cuprate to adventitious oxygen. Scrupulous deoxygenation with Oxiclear favorably reflected on the yield of (-)-ABC. Introduction ${ }^{22}$ of the $C(1-2)$ acyl phosphonate at $\mathrm{C}(19)$, selective desilylation (HF•Pyr) at $\mathrm{C}(3)$, and Dess-Martin oxidation ${ }^{23}$ then led to $(-)$ - $\mathbf{1 2}$, substrate for HornerEmmons macrocyclization. ${ }^{5}$ To our delight, the latter proceeded in 72% yield to furnish $(+)-\mathbf{1 3}$.

Selective ${ }^{24}$ removal of the DMB ether (DDQ) and a two-step oxidation then produced (-)-2, the requisite acid for Curtius

[^2]rearrangement. Exposure of (-)-2 in turn to Hünig's base, i - BuOCOCl , and aqueous NaN_{3} á la Weinstock, ${ }^{25}$ followed by thermal rearrangement and capture of the isocyanate with 2-(tri-methylsilyl)-ethanol provided carbamate (-)-14 in $\mathbf{7 5 \%}$ overall yield, with complete transfer of the $\mathrm{C}(20)$ stereogenicity. ${ }^{6}$ Acylation ${ }^{26}$ with acid chloride \mathbf{D}^{27} then afforded (-)-15 in 58\% yield, possessing the complete carbon skeleton of zampanolide. Iterative removal of the Teoc and TBS moieties, ${ }^{28}$ and oxidation of the $\mathrm{C}(7)$ hydroxyl gave ketone $(+)$ - $\mathbf{1 6}$ as a single compound in 75% yield (three steps). Oxidative removal of the PMB moiety then produced a mixture (1.3:1) of two polar compounds epimeric at $\mathrm{C}(20)$. After separation, the major, less polar component, (+)$\mathbf{1}$, possessed spectral data identical in all respects to natural (-)zampanolide (e.g., $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, COSY, HMQC, HRMS, and IR), except for chiroptic properties. The structure of $(+)-\mathbf{1 7}$, epimeric only at $\mathrm{C}(20)$, was secured via the NMR, HRMS, and IR data.

Unable to prevent erosion of the stereogenicity at $\mathrm{C}(20)$ upon deprotection of $(+)-\mathbf{1 6}$ and thereby assign the relative stereochemistry with certainty, we reasoned that PMB reprotection, in conjunction with spectroscopic correlation with (+)-16 having known stereogenicity at $\mathrm{C}(20)$, would provide a viable solution to this dilemma. After extensive experimentation, reprotection of $(+)-\mathbf{1}$ exploiting the Hanessian protocol ${ }^{29}$ under carefully buffered conditions afforded $(+)-16$ and $(+)-\mathrm{C}(20)$-epi- 16 with good stereocontrol (1:7.6). In similar fashion, $(+)$ - $\mathbf{1 7}$ afforded $(+)-16$ and $(+)-\mathrm{C}(20)$-epi-16 (3.7:1). With these results, the relative and absolute stereochemistry of (+)-zampanolide (1) can be tentatively assigned as $11 R, 15 R, 19 R$, and $20 R$.

In summary, the first total synthesis of (+)-zampanolide (1) has been achieved. Key elements of the synthesis include efficient use of the Petasis-Ferrier rearrangement to construct the cis-2,6-disubstituted tetrahydropyran and a stereospecific Curtius rearrangement to set the $\mathrm{C}(20)$ stereogenicity.

Acknowledgment. Support was provided by the National Institutes of Health (National Cancer Institute) through Grants CA-19033 and a postdoctoral fellowship (CA-80337) to R.M.C.

Supporting Information Available: Spectroscopic and analytical data for compounds $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{A B}, \mathbf{A B C}, \mathbf{1}, 2,4-\mathbf{8}, \mathbf{1 0}, \mathbf{1 2 - 1 7}$ and selected experimental procedures (PDF). This information is available free of charge via the Internet at http://pubs.acs.org.

JA012220Y

(16) The minor trans-pyranone was isolated in 12% yield after chromatography. The gradual decay in the cis/trans ratio $[(+)-6 \rightarrow(+)-7]$ is partially attributed to harsh reaction conditions.
(17) Mitsunobu, O. Synthesis 1981, 1.
(18) Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. J. Org. Chem. 1963, 28, 1140.
(19) For preparation of (-)-9 see: Oizumi, M.; Takahashi, M.; Ogasawara, K. Synlett 1997, 1111. For preparation of (+)-11 see: Somfai, P.; Olsson, R. Tetrahedron 1993, 49, 6645.
(20) Corey, E. J.; Katzenellenbogen, J. J. Am. Chem. Soc. 1969, 91, 1851.
(21) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175.
(22) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 522.
(23) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(24) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021.
(25) Weinstock, J. J. Org. Chem. 1961, 26, 3511; also see: Overman, L. E.; Taylor, G. F.; Petty, C. B.; Jessup, P. J. J. Org. Chem. 1978, 43, 2164. (26) (a) Roush, W. R.; Pfeifer, L. A. J. Org. Chem. 1998, 63, 2062. (b) Roush, W. R.; Pfeifer, L. A.; Marron, T. G. J. Org. Chem. 1998, 63, 2064.
(27) Prepared in one step from $2 Z, 4 E$-hexa-2,4-dienoic acid. For preparation of the latter see: Crombie, L.; Crombie, W. M. L. J. Chem. Soc., Perkin Trans. 1 1994, 1267.
(28) One-pot global desilylation gave a substantially lower yield.
(29) Hanessian, S.; Huynh, H. K. Tetrahedron Lett. 1999, 40, 671.

[^0]: (1) Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 5535. (b) For a related structure see: Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez-Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775.
 (2) For other natural products possessing the N-acyl hemiaminal functionality, see: (a) Benz, F.; Knüsel, F.; Nüesch, J.; Treichler, H.; Voser, W.; Nyfeler, R.; Keller-Schierlein, W. Helv. Chim. Acta 1974, 57, 2459. (b) Umezawa, H.; Kondo, S.; Iinuma, H.; Kunimoto, S.; Ikeda, Y.; Iwasawa, H.; Ikeda, D.; Takeuchi, T. J. Anitibiot. 1981, 34, 1622.
 (3) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26.
 (4) (a) Lipshutz, B. H.; Kozlowski, J. A.; Parker, D. A.; Nguyen, S. L.; McCarthy, K. E. J. Organomet. Chem. 1985, 285, 437. (b) Smith, A. B., III; Friestad, G. K.; Duan, J. J.-W.; Barbosa, J.; Hull, K. G.; Iwashima, M.; Qiu, Y.; Spoors, P. G.; Bertounesque, E.; Salvatore, B. A. J. Org. Chem. 1998, 63, 7596.
 (5) Nicolaou, K. C.; Seitz, S. P.; Pavia, M. R. J. Am. Chem. Soc. 1982, 104, 2030.
 (6) (a) Roush, W. R.; Marron, T. G. Tetrahedron Lett. 1993, 34, 5421. (b) Hoffmann, R. W.; Schlapbach, A. Tetrahedron Lett. 1993, 34, 7903.
 (7) Petasis, N. A.; Lu, S.-P. Tetrahedron Lett. 1996, 37, 141.
 (8) Smith, A. B., III; Verhoest, P. V.; Minbiole, K. P.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 4834 and references therein.
 (9) Brown, H. C.; Ramachandran, P. V. Pure Appl. Chem. 1991, 63, 307. (10) Boeckman, R. K., Jr.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1987, 109, 7553.
 (11) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
 (12) Harada, T.; Yoshida, T.; Kagamihara, Y.; Oku, A. J. Chem. Soc., Chem. Commun. 1993, 1367.

[^1]: (13) Prepared by oxidation of (2E)-3-bromobut-2-enol with PCC in 79\% yield. For preparation of the latter see: Corey, E. J.; Bock, M. G.; Kozikowski, A. P.; Rama Rao, A. V.; Floyd, D.; Lipshutz, B. Tetrahedron Lett. 1978, 19 , 1051.
 (14) Seebach, D.; Imwinkelried, R.; Stucky, G. Helv. Chim. Acta 1987, 70, 448.

[^2]: (15) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.

