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In 1996 Tanaka and Higa reported the isolation, partial structure
elucidation, and biological activity of (-)-zampanolide, an
architecturally novel macrolide from the Okinawan sponge
Fasciospongia rimosa(Scheme 1).1 Key structural elements
include the highly unsaturated framework and the uncommon
N-acyl hemiaminal side chain.2 Adding to the structural complex-
ity, only the relative stereochemistry between C(11), C(15), and
C(19) had been assigned. Although the extreme scarcity of (-)-
zampanolide precluded a comprehensive evaluation of the bio-
logical profile, the impressive cytotoxicity against P388, HT29,
A549, and MEL28 cell lines (IC50 1-5 ng/mL), in conjunction
with the interesting architecture, prompted us to launch a synthetic
program targeting this metabolite. Herein, we disclose the first
total synthesis and tentative stereochemical assignment of the
nonnaturally occurring antipode, (+)-zampanolide (1).

Retrosynthetically, disconnections of1 at the amide, the
macrolide, and the C(2-3), C(8-9), and C(17-18) linkages gave
rise to fragments C(3-8) A, C(9-17)B, C(18-20)C, and C(1′-
6′) D. In the forward direction, we envisioned construction of
the macrolide via Kocienski-Julia olefination3 of aldehydeA with
sulfoneB, followed in turn by nucleophilic opening of epoxide
C with a higher-order cuprate4 derived fromAB, incorporation
of a C(1-2) acyl phosphonate, and intramolecular Horner-
Emmons macrocyclization.5 Highlights of the closing stage of
the synthesis would then entail installation of theN-acyl hemi-
aminal moiety via a stereospecific Curtius rearrangement6 of
R-alkoxy acid2 followed by acylation with acid chlorideD.

To assemble fragmentB we elected the Petasis-Ferrier
rearrangement,7 recently established in our laboratory as a
powerful, stereocontrolled entry tocis-2,6-disubstituted tetrahy-
dropyrans.8 Toward this end, Brown asymmetric allylation9 of
aldehyde310 (Scheme 2) followed in turn by TES protection of
the hydroxyl and ozonolysis afforded (+)-4, which upon oxida-
tion11 and desilylation led toâ-hydroxy acid (-)-5 (57% yield,
five steps). Bis-silylation12 followed by union with (2E)-3-

bromobut-2-enal13 promoted by TMSOTf14 furnished dioxanone
(+)-6 in 82% overall yield [10:1 at C(15)]. Methylenation with
the Petasis-Tebbe reagent15 then furnished the corresponding enol
ethers [72% yield, 6:1 at C(15)], which upon treatment with
Me2AlCl8 underwent the desired Petasis-Ferrier rearrangement7

to delivercis-pyranone (+)-7 in 59% yield.16 Ketone methylena-
tion, desilylation, incorporation of the thiotetrazole via Mitsunobu
reaction,17 and oxidation18 proceeded smoothly to afford sulfone
(-)-B (62% yield, 4 steps).

Construction of subunitsA andC was achieved as outlined in
Scheme 3.19 Noteworthy is the stereoselective20 installation of
the C(4-5) olefin in subtargetA.

With the requisite subtargets in hand, assembly of the macrolide
began with the Kocienski-modified3 Julia olefination21 of aldehyde
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(+)-A (Scheme 4) with sulfone (-)-B to provide vinyl bromide
(-)-AB as the sole C(8-9) olefin isomer (88% yield). Union of
(-)-AB with epoxide (+)-C was then achieved through aegis of
a higher-order cuprate.4 Initially, low yields resulted due to the
extreme sensitivity of the cuprate to adventitious oxygen.
Scrupulous deoxygenation with Oxiclear favorably reflected on
the yield of (-)-ABC. Introduction22 of the C(1-2) acyl phos-
phonate at C(19), selective desilylation (HF‚Pyr) at C(3), and
Dess-Martin oxidation23 then led to (-)-12, substrate for Horner-
Emmons macrocyclization.5 To our delight, the latter proceeded
in 72% yield to furnish (+)-13.

Selective24 removal of the DMB ether (DDQ) and a two-step
oxidation then produced (-)-2, the requisite acid for Curtius

rearrangement. Exposure of (-)-2 in turn to Hünig’s base,
i-BuOCOCl, and aqueous NaN3 á la Weinstock,25 followed by
thermal rearrangement and capture of the isocyanate with 2-(tri-
methylsilyl)-ethanol provided carbamate (-)-14 in 75% overall
yield, with complete transfer of the C(20) stereogenicity.6

Acylation26 with acid chlorideD27 then afforded (-)-15 in 58%
yield, possessing the complete carbon skeleton of zampanolide.
Iterative removal of the Teoc and TBS moieties,28 and oxidation
of the C(7) hydroxyl gave ketone (+)-16 as a single compound
in 75% yield (three steps). Oxidative removal of the PMB moiety
then produced a mixture (1.3:1) of two polar compounds epimeric
at C(20). After separation, the major, less polar component, (+)-
1, possessed spectral data identical in all respects to natural (-)-
zampanolide (e.g., 500 MHz1H NMR, 125 MHz 13C NMR,
COSY, HMQC, HRMS, and IR), except for chiroptic properties.
The structure of (+)-17, epimeric only at C(20), was secured via
the NMR, HRMS, and IR data.

Unable to prevent erosion of the stereogenicity at C(20) upon
deprotection of (+)-16 and thereby assign the relative stereo-
chemistry with certainty, we reasoned that PMB reprotection, in
conjunction with spectroscopic correlation with (+)-16 having
known stereogenicity at C(20), would provide a viable solution
to this dilemma. After extensive experimentation, reprotection of
(+)-1 exploiting the Hanessian protocol29 under carefully buffered
conditions afforded (+)-16 and (+)-C(20)-epi-16 with good
stereocontrol (1:7.6). In similar fashion, (+)-17 afforded (+)-16
and (+)-C(20)-epi-16 (3.7:1). With these results, the relative and
absolute stereochemistry of (+)-zampanolide (1) can be tentatively
assigned as 11R, 15R, 19R, and 20R.

In summary, the first total synthesis of (+)-zampanolide (1)
has been achieved. Key elements of the synthesis include efficient
use of the Petasis-Ferrier rearrangement to construct thecis-
2,6-disubstituted tetrahydropyran and a stereospecific Curtius
rearrangement to set the C(20) stereogenicity.
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